## Three New Phenyl Ether Derivatives from Aspergillus carneus HQ889708

by Ping He<sup>a</sup>), Sha-Sha Tian<sup>a</sup>), Yan Xu<sup>a</sup>), He Yu<sup>a</sup>), Yan-Nan Ji<sup>a</sup>), Hua-Jie Zhu<sup>\*a</sup>), and Jian-Heng Li<sup>a</sup>)

<sup>a</sup>) Chinese Center for Chirality, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmacy, Hebei University, Baoding 071002, P. R. China (phone/fax: + 86-0312-5994812; e-mail: hjzhu@mail.kib.ac.cn)

Three new phenyl ether derivatives, 3-hydroxy-5-(3-hydroxy-5-methylphenoxy)benzoic acid (1), 3,4-dihydroxy-5-(3-hydroxy-5-methylphenoxy)benzoic acid (2), 3-[3-hydroxy-5-(hydroxymethyl)phenoxy]-5-methylphenol (3), and three known compounds 4-6 were obtained from the fermentation broth of *Aspergillus carneus* HQ889708, which was isolated from sea water from South China Sea. The structures of compounds 1-3 were established on the basis of spectroscopic methods including ESI-MS and NMR. Compounds 4-6 were reported before as synthesized products, herein, they are reported from nature for the first time.

**Introduction.** – Aspergillus is a large genus of the fungus kingdom, which is distributed all over the world. A. carneus has been source of bioactive secondary metabolites with diverse structures such as dihydrocinereain [1], carneamides A - C [2], aspergillicins A - E [3], which exhibited activities in insecticide [4][5], herbicide [6], mutagen [7][8], and others [9]. In recent years, people have made new progress on the study of benzene ethers [10]. In our recent study of A. carneus HQ889708, three new compounds were obtained (*Fig. 1*). In addition, three known secondary metabolites, dehydrocyclopeptine (4), viridicatin (5), and viridicatol (6) were obtained.

**Results and Discussion.** – Compound **1** was obtained as white amorphous solid. The molecular formula was deduced as  $C_{14}H_{12}O_5$  from the ESI-MS data (m/z 259  $([M-H]^{-})$ , 519  $([2M-H]^{-})$ ), HR-ESI-MS (259.2135  $([M-H]^{-}, C_{14}H_{11}O_{5}^{-}; calc.$ 259.0606)), and <sup>13</sup>C-NMR. The <sup>13</sup>C-NMR spectrum displayed 14 C-atom signals (*Table*). Analysis of the <sup>1</sup>H- and <sup>13</sup>C-NMR data revealed that compound **1** contains two Ph rings and one Me group ( $\delta(H)$  2.26 (s, 3 H) and  $\delta(C)$  20.2 (q)). According to the coupling constants (7.09 (t, J = 1.7, 1 H), 6.64 (t, J = 2.3, 1 H), 7.20 (t, J = 1.7, 1 H), 6.27 (t, J = 2.1), 6.34 (br. s, 1 H), 6.44 (br. s, 1 H)), those two Ph rings were *meta*-substituted. The HMBC spectrum exhibited the correlations (*Fig.* 2): H–C(2') ( $\delta$ (H) 6.27 (t, J= 2.1)/C(1') ( $\delta$ (C) 157.5) and C(3') ( $\delta$ (C) 158.7); H–C(4') ( $\delta$ (H) 6.34 (br. s))/C(2')  $(\delta(C) \ 103.3), \ C(3') \ (\delta(C) \ 158.7) \ and \ C(6') \ (\delta(C) \ 111.4); \ H-C(6') \ (\delta(H) \ 6.44 \ (br. \ s))/$ C(1') ( $\delta(C)$  157.5) and C(2') ( $\delta(C)$  103.3); Me(7')/C(4') ( $\delta(C)$  110.8), C(5') ( $\delta(C)$ 140.6), C(6') ( $\delta$ (C) 111.4), indicating a Me-substituted benzene ring. Correlations H-C(2) ((7.09 (t, J=1.7))/C(1) ( $\delta$ (C) 132.9), C(3) (158.3), C(4) (109.7), C(6) (110.9) and C(7) (168.2); H–C(4) (6.64 (t, J = 2.3)/C(3) ( $\delta$ (C) 158.3) and C(5) (158.6); H-C(6) (7.20 (t, J = 1.7))/C(1) ( $\delta$ (C) 132.9), C(5) (158.6), and C(7) (168.2) indicated

© 2015 Verlag Helvetica Chimica Acta AG, Zürich

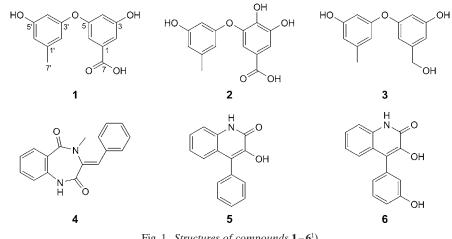



Fig. 1. Structures of compounds  $1-6^{1}$ )

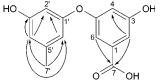



Fig. 2. Key HMBCs  $(H \rightarrow C)$  of  $1^{1}$ )

Table. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR Data* (600 and 150 MHz, resp., in CD<sub>3</sub>OD) of  $1-3^{1}$ ).  $\delta$  in ppm, *J* in Hz.

| Position | 1                   |             | 2                    |             | 3                   |             |
|----------|---------------------|-------------|----------------------|-------------|---------------------|-------------|
|          | $\delta(H)$         | $\delta(C)$ | $\delta(\mathrm{H})$ | $\delta(C)$ | $\delta(H)$         | $\delta(C)$ |
| 1        |                     | 132.9       |                      | 121.1       |                     | 144.2       |
| 2        | 7.09 $(t, J = 1.7)$ | 110.3       | 7.12 (d, J = 1.4)    | 113.4       | 6.48 (d, J = 0.5)   | 107.9       |
| 3        |                     | 158.3       |                      | 143.9       |                     | 158.4       |
| 4        | 6.64 (t, J = 2.3)   | 109.7       |                      | 141.9       | 6.33 $(t, J = 2.2)$ | 104.4       |
| 5        |                     | 158.6       |                      | 146.1       |                     | 158.5       |
| 6        | 7.20(t, J = 1.7)    | 110.9       | 7.33 (d, J = 1.4)    | 112.3       | 6.56 (d, J = 0.6)   | 108.2       |
| 7        |                     | 168.2       |                      | 168.5       | 4.51 (s)            | 63.5        |
| 1′       |                     | 157.5       |                      | 158.5       |                     | 158.2       |
| 2′       | 6.27 (t, J = 2.1)   | 103.3       | 6.23 (br. s)         | 101.7       | 6.25 (t, J = 2.0)   | 103.0       |
| 3'       |                     | 158.7       | · · ·                | 158.1       |                     | 158.1       |
| 4′       | 6.34 (br. s)        | 110.8       | 6.38 (br. s)         | 110.5       | 6.31 (br. s)        | 110.6       |
| 5'       |                     | 140.6       |                      | 140.3       |                     | 140.4       |
| 6'       | 6.44 (br. s)        | 111.4       | 6.31 (br. s)         | 109.3       | 6.39 (br. s)        | 110.8       |
| 7′       | 2.26(s)             | 20.2        | 2.24(s)              | 20.2        | 2.23(s)             | 20.2        |

that there is a benzoic acid structure (Fig. 2). Based on the evidences, the structure of compound 1 was identified as 3-hydroxy-5-(3-hydroxy-5-methylphenoxy)benzoic acid, as depicted in Fig. 1.

1) Arbitrary atom numbering used for the NMR interpretation.

820

Compound 2 was obtained as white amorphous solid. The molecular formula was deduced as  $C_{14}H_{12}O_6$  from the ESI-MS data  $(m/z \ 275 \ ([M-H]^-))$ , HR-ESI-MS  $(275.2225 ([M-H]^-, C_{14}H_{11}O_6^-; \text{ calc. } 275.0556))$ , and <sup>13</sup>C-NMR. The <sup>1</sup>H- and <sup>13</sup>C-NMR data of compound **2** were similar to those of compound **1**, Therefore, it was assumed that they have the same skeleton, except for the signal of the C(4) ( $\delta$ (C) 141.9; *Table*). The HMBCs H–C(2) ( $\delta$ (C) 7.12 (t, J = 1.4))/C(3) ( $\delta$ (C) 143.9), C(6) (112.3), and C(7) (168.5); H–C(6) ( $\delta$ (C) 7.33 (t, J = 1.4))/C(1) ( $\delta$ (C) 121.1), C(5) (146.1), and C(7) (168.5) indicated that there is a benzoic acid moiety (*Fig. 3*). C(4)  $(\delta(C) 141.9)$  is a quaternary atom. Therefore, compound 2 has one more OH group than 1 has, this OH connected to C(4) ( $\delta$ (C) 141.9). The HMBC also exhibited the following correlations: H–C(2') ( $\delta$ (H) 6.23 (br. s))/C(3') ( $\delta$ (C) 158.1); H–C(4') ( $\delta$ (H) (6.38 (br. s))/C(2') ( $\delta(C)$  101.7), C(3') (158.1), and C(6') (109.3); H–C(6') (6.31 (br. s))/ C(1') ( $\delta(C)$  158.5) and C(2') (101.7); Me(7')/C(4') ( $\delta(C)$  110.5), C(5') (140.3), and C(6') (109.3), indicating a Me-substituted benzene ring. Based on the results, the structure of compound 2 was identified as 3,4-dihydroxy-5-(3-hydroxy-5-methylphenoxy)benzoic acid, as depicted in Fig. 1.

Compound **3** was obtained as colorless oil. The molecular formula was deduced as  $C_{14}H_{14}O_4$  from the ESI-MS data  $(m/z \ 245 \ ([M-H]^-))$ , HR-ESI-MS (245.2494  $([M-H]^-, C_{14}H_{13}O_4^-; calc. 245.0814)$ , and <sup>13</sup>C-NMR. <sup>1</sup>H-NMR data displayed signals at  $\delta(H)$  6.48, 6.33, 6.56, 4.51, 6.25, 6.31, 6.39, and 2.23, and the <sup>13</sup>C-NMR displayed 14 signals at  $\delta(C)$  144.2, 107.9, 158.4, 104.4, 158.5, 108.2, 63.5, 158.2, 103.0, 158.1, 110.6, 140.4, 110.8, 20.2. The <sup>1</sup>H- and <sup>13</sup>C-NMR data of compound **3** were similar to those of the former two compounds. Thus, it was assumed that these compounds have similar skeletons. The C=O group of C(7) (168.2) in compound **1** was replaced by a CH<sub>2</sub>OH group (63.5) in compound **3**. The HMBCs H–C(2) (6.48 (d, J = 0.5))/C(3) ( $\delta(C)$  158.4); H–C(4) (6.33 (d, J = 2.2))/C(3) ( $\delta(C)$  158.4), C(5) (158.5); H–C(6) (6.56 (d, J = 0.6))/C(2) ( $\delta(C)$  107.9), C(4) (104.4), C(5) (158.5); CH<sub>2</sub>(7) (4.51 (s))/C(1) ( $\delta(C)$  144.2), C(2) (107.9), C(6) (108.2) defining the structure of the benzyl alcohol moiety (*Fig. 4*). Based on the evidences, the structure of compound **3** was identified as 3-[3-hydroxy-5-(hydroxymethyl)phenoxy]-5-methylphenol, as depicted in *Fig. 1*.

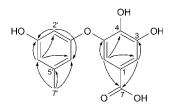
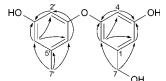
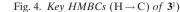





Fig. 3. Key HMBCs  $(H \rightarrow C)$  of  $2^{1}$ 





In addition, three known compounds, dehydrocyclopeptine (4) [11], viridicatin (5) [12], and viridicatol (6) [13] were obtained (*Fig. 1*). Their structures were established on the basis of NMR spectroscopic methods.

H.-J. Z. thanks the financial support from Hebei University.

## **Experimental Part**

General. Column chromatography (CC): SiO<sub>2</sub> (200–300 mesh), ODS (40–63 mm, YMC Co., Japan), or Sephadex LH-20 (Pharmacia, Co.). HPLC: Shimadzu apparatus (C18 column, 5 µm, 19 × 250 mm). 1D- and 2D-NMR spectra: Bruker Avance III 600 MHz NMR instrument;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. ESI-MS: Bruker Apex-Ultra 7.0 T mass instrument (neg.); in m/z.

The fungus, which was isolated from sea water of South China Sea, has been indentified as *A. carneus* HQ889708 (*Beijing Sunbiotech Co., Ltd.*).

*Fermentation, Extraction, and Isolation.* The fungus *A. carneus* HQ889708 was maintained on potato dextrose agar (PDA) at 28°. After incubation on PDA liquid medium at 28° for 5 d on a rotary shaker (200 rpm), each primary culture was transferred into a 11 *Erlenmeyer* flask containing 0.51 of the rice solid culture, and incubated at 28° for 40 d. After the solid fermentation, the 150 bottles of carrier were poured in a large container, and extracted with 251 AcOEt for three times. The combined AcOEt soln. was concentrated under reduced pressure to afford a brown gum (600 g). The gum was subjected to CC (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH (50:1 to 1:1), step gradient elution) to afford eleven fractions, *Frs. 1–11. Fr. 6* (3 g) was subjected to CC (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>/MeOH (50:1 to 1:1), step gradient elution) to afford eleven fractions, *Frs. 1–11. Fr. 6* (3 g) was further fractionated and subjected to *ODS* (eluted with MeOH/H<sub>2</sub>O 80:20) and *Sephadex LH-20* (eluted with MeOH) to afford compound **1** (122 mg), compound **2** (16 mg) and compound **3** (57 mg). *Fr. 11* (1 g) was further purified by semi-prep. HPLC over a reversed *C18* column (19 × 250 mm) using MeOH/H<sub>2</sub>O (70:30) as eluting solvent (flow rate 2.0 ml/min, detector wave length 254 nm) to afford compound **6** (12 mg).

## REFERENCES

- O. I. Zhuravleva, S. S. Afiyatullov, E. A. Yurchenko, V. A. Denisenko, N. N. Kirichuk, P. S. Dmitrenok, *Nat. Prod. Commun.* 2013, 8, 1071.
- [2] O. I. Zhuravleva, S. S. Afiyatullov, V. A. Denisenko, S. P. Ermakova, N. N. Slinkina P. S. Dmitrenok, N. Y. Kim, *Phytochemistry* 2012, 80, 123.
- [3] R. J. Capon, C. Skene, M. Stewart, J. Ford, R. A. J. O'Hair, L. Williams, E. Lacey, J. H. Gill, K. Heiland, T. Friedel, Org. Biomol. Chem. 2003, 1, 1856.
- [4] J. J. Fourie, L. J. Fourie, I. G. Horak, M. G. Snyman, J. S. Afr. Vet. Assoc. 2012, 81, 33.
- [5] P. K. Mittal, U. Sreehari, R. K. Razdan, A. P. Dash, J. Vector Borne Dis. 2009, 46, 241.
- [6] S. C. Kim, I. B. Im, Weed Biol. Manage. 2002, 2, 65.
- [7] T. Matsushita, Y. Matsui, Y. Matsui, T. Inoue, J. Environ. Sci. Health Part 2005, 40, 851.
- [8] S. Kitamori, Y. Tanaka, Y. Ishiguro, H. Kondo, Sangyo Eiseigaku Zasshi 1995, 37, 143.
- [9] B. Erkmen, M. Caliskan, S. Yerli, Vet. Hum. Toxicol. 2000, 42, 5.
- [10] J. L. Wu, J. Tech. 2012, 26, 41.
- [11] N. Zelenkova, N. Vinokurova, M. Arinbasarov, Appl. Biochem. Microbiol. 2003, 39, 44.
- [12] Y. Kobayashi, T. Harayama, Org. Lett. 2009, 11, 1603.
- [13] M.-Y. Wei, R.-Y. Yang, C.-L. Shao, Chem. Nat. Compd. 2011, 47, 322.

Received October 12, 2014